\(\int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx\) [211]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 371 \[ \int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx=-\frac {\cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {(a-b) \sqrt {a+b} \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (1+\csc (c+d x))}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \tan (c+d x)}{a d}-\frac {\sqrt {a+b} \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (1+\csc (c+d x))}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \tan (c+d x)}{d}+\frac {a \sqrt {a+b} \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (1+\csc (c+d x))}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \tan (c+d x)}{b d} \]

[Out]

-cos(d*x+c)*(a+b*sin(d*x+c))^(1/2)/d/sin(d*x+c)^(1/2)+(a-b)*EllipticE((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2)/sin(d
*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-csc(d*x+c))/(a+b))^(1/2)*(a*(1+csc(d*x+c))/(a-b))^(1/2)*ta
n(d*x+c)/a/d-EllipticF((a+b*sin(d*x+c))^(1/2)/(a+b)^(1/2)/sin(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(
a*(1-csc(d*x+c))/(a+b))^(1/2)*(a*(1+csc(d*x+c))/(a-b))^(1/2)*tan(d*x+c)/d+a*EllipticPi((a+b*sin(d*x+c))^(1/2)/
(a+b)^(1/2)/sin(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-csc(d*x+c))/(a+b))^(1/2)*(a*(1+cs
c(d*x+c))/(a-b))^(1/2)*tan(d*x+c)/b/d

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 371, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2900, 3133, 2888, 12, 2880, 2895, 3073} \[ \int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx=-\frac {\sqrt {a+b} \tan (c+d x) \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (\csc (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}+\frac {(a-b) \sqrt {a+b} \tan (c+d x) \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (\csc (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}+\frac {a \sqrt {a+b} \tan (c+d x) \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (\csc (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}-\frac {\cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\sin (c+d x)}} \]

[In]

Int[Sqrt[Sin[c + d*x]]*Sqrt[a + b*Sin[c + d*x]],x]

[Out]

-((Cos[c + d*x]*Sqrt[a + b*Sin[c + d*x]])/(d*Sqrt[Sin[c + d*x]])) + ((a - b)*Sqrt[a + b]*Sqrt[(a*(1 - Csc[c +
d*x]))/(a + b)]*Sqrt[(a*(1 + Csc[c + d*x]))/(a - b)]*EllipticE[ArcSin[Sqrt[a + b*Sin[c + d*x]]/(Sqrt[a + b]*Sq
rt[Sin[c + d*x]])], -((a + b)/(a - b))]*Tan[c + d*x])/(a*d) - (Sqrt[a + b]*Sqrt[(a*(1 - Csc[c + d*x]))/(a + b)
]*Sqrt[(a*(1 + Csc[c + d*x]))/(a - b)]*EllipticF[ArcSin[Sqrt[a + b*Sin[c + d*x]]/(Sqrt[a + b]*Sqrt[Sin[c + d*x
]])], -((a + b)/(a - b))]*Tan[c + d*x])/d + (a*Sqrt[a + b]*Sqrt[(a*(1 - Csc[c + d*x]))/(a + b)]*Sqrt[(a*(1 + C
sc[c + d*x]))/(a - b)]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Sin[c + d*x]]/(Sqrt[a + b]*Sqrt[Sin[c + d*x]])]
, -((a + b)/(a - b))]*Tan[c + d*x])/(b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2880

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :
> Dist[1/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Dist[b/(a - b), Int[(1 +
 Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &
& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2900

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Dist[1/(d*(m + n)
), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a^2*c*d*(m + n) + b*d*(b*c*(m - 1) + a*d
*n) + (a*d*(2*b*c + a*d)*(m + n) - b*d*(a*c - b*d*(m + n - 1)))*Sin[e + f*x] + b*d*(b*c*n + a*d*(2*m + n - 1))
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c
^2 - d^2, 0] && LtQ[0, m, 2] && LtQ[-1, n, 2] && NeQ[m + n, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3133

Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.
)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x
], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C - 2*a*b*C*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {\int \frac {-\frac {a b}{2}+\frac {1}{2} a b \sin ^2(c+d x)}{\sin ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sin (c+d x)}} \, dx}{b} \\ & = -\frac {\cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {1}{2} a \int \frac {\sqrt {\sin (c+d x)}}{\sqrt {a+b \sin (c+d x)}} \, dx+\frac {\int -\frac {a b}{2 \sin ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sin (c+d x)}} \, dx}{b} \\ & = -\frac {\cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {a \sqrt {a+b} \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (1+\csc (c+d x))}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \tan (c+d x)}{b d}-\frac {1}{2} a \int \frac {1}{\sin ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sin (c+d x)}} \, dx \\ & = -\frac {\cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {a \sqrt {a+b} \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (1+\csc (c+d x))}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \tan (c+d x)}{b d}+\frac {1}{2} a \int \frac {1}{\sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)}} \, dx-\frac {1}{2} a \int \frac {1+\sin (c+d x)}{\sin ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sin (c+d x)}} \, dx \\ & = -\frac {\cos (c+d x) \sqrt {a+b \sin (c+d x)}}{d \sqrt {\sin (c+d x)}}+\frac {(a-b) \sqrt {a+b} \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (1+\csc (c+d x))}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \tan (c+d x)}{a d}-\frac {\sqrt {a+b} \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (1+\csc (c+d x))}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \tan (c+d x)}{d}+\frac {a \sqrt {a+b} \sqrt {\frac {a (1-\csc (c+d x))}{a+b}} \sqrt {\frac {a (1+\csc (c+d x))}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \sin (c+d x)}}{\sqrt {a+b} \sqrt {\sin (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \tan (c+d x)}{b d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 27.53 (sec) , antiderivative size = 10847, normalized size of antiderivative = 29.24 \[ \int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx=\text {Result too large to show} \]

[In]

Integrate[Sqrt[Sin[c + d*x]]*Sqrt[a + b*Sin[c + d*x]],x]

[Out]

Result too large to show

Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 5.26 (sec) , antiderivative size = 8415, normalized size of antiderivative = 22.68

method result size
default \(\text {Expression too large to display}\) \(8415\)

[In]

int(sin(d*x+c)^(1/2)*(a+b*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F(-1)]

Timed out. \[ \int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(sin(d*x+c)^(1/2)*(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx=\int \sqrt {a + b \sin {\left (c + d x \right )}} \sqrt {\sin {\left (c + d x \right )}}\, dx \]

[In]

integrate(sin(d*x+c)**(1/2)*(a+b*sin(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(c + d*x))*sqrt(sin(c + d*x)), x)

Maxima [F]

\[ \int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx=\int { \sqrt {b \sin \left (d x + c\right ) + a} \sqrt {\sin \left (d x + c\right )} \,d x } \]

[In]

integrate(sin(d*x+c)^(1/2)*(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(d*x + c) + a)*sqrt(sin(d*x + c)), x)

Giac [F(-2)]

Exception generated. \[ \int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(sin(d*x+c)^(1/2)*(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:The choice was done assuming 0=[0,0,0]ext_reduce Error: Bad Argument TypeThe choice was done assuming 0=[0,
0,0]ext_red

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\sin (c+d x)} \sqrt {a+b \sin (c+d x)} \, dx=\int \sqrt {\sin \left (c+d\,x\right )}\,\sqrt {a+b\,\sin \left (c+d\,x\right )} \,d x \]

[In]

int(sin(c + d*x)^(1/2)*(a + b*sin(c + d*x))^(1/2),x)

[Out]

int(sin(c + d*x)^(1/2)*(a + b*sin(c + d*x))^(1/2), x)